
Faculty of Engineering and Technology 

ANNAMALAI           UNIVERSITY 
 

 
 

 

Department of Computer Science and Engineering 
B.E. [Computer Science and Engineering] 

IV – Semester 

 
22CSCP408 – Operating Systems Lab  

 
 

 
 
 
 
 

   
 
 
Name   :   
 
Reg. No.   :   

 



ANNAMALAI UNIVERSITY 

Faculty of Engineering and Technology 

 
 
 

 
 
 

 
 

Department of Computer Science and Engineering 
B.E. [Computer Science and Engineering] 

IV – Semester 

 
22CSCP408 – Operating Systems Lab  

 
 
 

Certified that, this is a bona fide record of work done by       

Mr. /Ms. ___________________________________________________________ 

Reg. No. ___________________________________     of   B.E. (Computer Science 

and Engineering) in the 22CSCP408 – Operating Systems Lab during the Even 

Semester of the academic year 2023 – 2024. 

  

 
 

 
 
 
 
Staff in-charge Internal Examiner     External Examiner 
 
 
Place: Annamalainagar 

Date:   __ /__ / 2024. 



22CSCP408 Operating Systems Lab L T P C 
0 0 3 1.5 

 
Course Objectives : 
– To prepare the students to write the C programs to understand the concepts of 

operating system. 
– To impart programming skills in shell programming. 

 
List of Exercises 

1. Job scheduling techniques. 
2. Disk scheduling techniques. 
3. Memory allocation techniques. 
4. Memory management techniques. 
5. Page replacement techniques. 
6. Producer consumer problem. 
7. Bankers algorithm. 
8. Dining Philosophers problem. 
9. Write a shell script to perform the file operations using UNIX commands. 
10. Write a shell script to perform the operations of basic UNIX utilities. 
11. Write a shell script for arrange ‘n’ numbers using ‘awk’. 
12. Write a shell script to perform nCr calculation using recursion. 
13. Write a shell script to sort numbers and alphabetic from a text file using single 

‘awk’ command. 
14. Write a Shell script to display all the files which are accessed in the last 10 days 

and to list all the files in a directory having size less than 3 blocks, greater than 3 
blocks and equal to 3 blocks. 

15. Write a Shell script to display the numbers between 1 and 9999 in words. 
16. Write a Shell script for Palindrome Checking. 
 
Course Outcomes: 
At the end of this course, the students will be able to 
1. Develop C programs for Job scheduling techniques, Disk scheduling techniques, 

Memory management techniques and for synchronization problems. 
2. Develop Shell script to practice Unix commands and utilities. 
3. Demonstrate an ability to listen and answer the viva questions related to 

programming skills needed for solving real-world problems in Computer Science 
and Engineering. 

 
Mapping of Course Outcomes with Programme Outcomes 

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

CO1 2 2 3 2 - - - - - - - - 

CO2 1 2 3 - - - - - - - - - 

CO3 2 2 - - - - - - - 2 - 2 
 



Vision-Mission of Faculty of Engineering and Technology 
Vision 
 
 Providing world class quality education with strong ethical values to nurture and develop 
outstanding professionals fit for globally competitive environment. 
 
Mission 
 
• Provide quality technical education with a sound footing on basic engineering principles, 

technical and managerial skills, and innovative research capabilities. 
• Transform the students into outstanding professionals and technocrats with strong ethical 

values capable of creating, developing and managing global engineering enterprises. 
• Develop a Global Knowledge Hub, striving continuously in pursuit of excellence in 

Education, Research, Entrepreneurship and Technological services to the Industry and 
Society. 

• Inculcate the importance and methodology of life-long learning to move forward with 
updated knowledge to face the challenges of tomorrow. 

 
Vision-Mission of the Department of Computer Science and Engineering 

Vision 
 
      To provide a congenial ambience for individuals to develop and blossom as academically 
superior, socially conscious and nationally responsible citizens. 
 
Mission 
 
• Impart high quality computer knowledge to the students through a dynamic scholastic 

environment wherein they learn to develop technical, communication and leadership skills to 
bloom as a versatile professional. 

• Develop life-long learning ability that allows them to be adaptive and responsive to the 
changes in career, society, technology, and environment. 

• Build student community with high ethical standards to undertake innovative research and 
development in thrust areas of national and international needs. 

• Expose the students to the emerging technological advancements for meeting the demands of 
the industry. 



Program Educational Objectives (PEOs) 

 

PEO PEO Statements 

PEO1 To prepare the graduates with the potential to get employed in the right role and/or become 
entrepreneurs to contribute to the society. 

PEO2 To provide the graduates with the requisite knowledge to pursue higher education and carry 
out research in the field of Computer Science. 

PEO3 To equip the graduates with the skills required to stay motivated and adapt to the dynamically 
changing world so as to remain successful in their career. 

PEO4 To train the graduates to communicate effectively, work collaboratively and exhibit high 
levels of professionalism and ethical responsibility. 

 



Program Outcomes (POs) 
 

S. NO. Program Outcomes 

PO1 Engineering Knowledge: Apply the knowledge of mathematics, science, engineering 
fundamentals, and an engineering specialization to the solution of complex engineering 
problems. 

PO2 Problem Analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of mathematics, 
natural sciences and engineering sciences. 

PO3 Design/Development of Solutions: Design solutions for complex engineering problems and 
design system components or processes that meet the specified needs with appropriate 
consideration for the public health and safety, and the cultural, societal, and environmental 
considerations. 

PO4 Conduct Investigations of Complex Problems: Use research-based knowledge and research 
methods including design of experiments, analysis and interpretation of data, and synthesis of 
the information to provide valid conclusions. 

PO5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern 
engineering and IT tools including prediction and modeling to complex engineering activities 
with an understanding of the limitations. 

PO6 The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess 
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to 
the professional engineering practice. 

PO7 Environment and Sustainability: Understand the impact of the professional 
engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, 
and need for sustainable development. 

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice. 

PO9 Individual and Team Work: Function effectively as an individual, and as a member or leader 
in diverse teams, and in multidisciplinary settings. 

PO10 Communication: Communicate effectively on complex engineering activities with the 
engineering community and with society at large, such as, being able to comprehend and write 
effective reports and design documentation, make effective presentations, and give and receive 
clear instructions. 

PO11 Project Management and Finance: Demonstrate knowledge and understanding of the 
engineering and management principles and apply these to one’s own work, as a member and 
leader in a team, to manage projects and in multidisciplinary environments. 

PO12 Life-long Learning: Recognize the need for, and have the preparation and ability to engage in 
independent and lifelong learning in the broadest context of technological change. 

 



Program Specific Outcomes (PSOs) 
 

S. No. Program Specific Outcomes 

PSO1 Acquire the ability to understand basic sciences, humanity sciences, basic engineering 
sciences and fundamental core courses in Computer Science and Engineering to realize 
and appreciate real life problems in diverse fields for proficient design of computer-
based systems of varying complexity. 

PSO2 Learn specialized courses in Computer Science and Engineering to build up the aptitude 
for applying typical practices and approaches to deliver quality products intended for 
business and industry requirements. 

PSO3 Apply technical and programming skills in Computer Science and Engineering essential 
for employing current techniques in software development crucial in industries, to create 
pioneering career paths for pursuing higher studies, research and to be an entrepreneur. 

 



 

 

Rubric for CO3 in Laboratory Courses 

Rubric 
Distribution of 10 Marks for CIE/SEE Evaluation Out of 40/60 Marks 

UpTo2.5 Marks Up To 5 Marks Up To 7.5 Marks Up To 10 Marks 

Demonstrate 
an ability to 
Listen and 
answer the 
viva questions 
related to 
programming 
Skills needed 
for solving 
real-world 
problems in 
Computer 
Science and 
Engineering. 

Poor listening 
and 
communication 
skills. Failed to 
relate the 
programming 
Skills needed for 
Solving the 
problem. 

Showed better 
communication 
Skill by relating 
The problem 
with The 
programming 
skills acquired 
but the 
description 
showed serious 
errors. 

Demonstrated 
good 
Communication 
skills by relating 
the problem with 
the programming 
skills acquired 
with few errors. 

Demonstrated 
excellent 
communication 
skills by relating 
the problem with 
the programming 
skills acquired 
and have been 
successful in 
tailoring the 
description. 



Table of Content 

 

Ex. No. Date Name of the Exercise Page No. Marks Sign 

1.   Job Scheduling Algorithms 01   

2.   Disk Scheduling Algorithms 09   

3.   Memory Allocation Techniques 14   

4.   Memory Management using Paging 21   

5.   Memory Management using Segmentation 28   

6.   Banker’s Safety Algorithm 30   

7.   Dining Philosopher Problem 37   

Unix Shell Programming 

8.   Given Number is Odd or Even 43   

9.   Displaying Leap year or Not 44   

10.   Factorial calculation 45   

11.   nCr Computation 46   

12.   Extra time Pay Computation 48   

13.   Arranging the numbers using awk command 50   

14.   Number to word conversion 53   

15.   Sorting the given names 55   

16.   Reversing a given string 57   

17.   File copy 58   
 

 



Department of Computer Science and Engineering  2023-2024 

Ex. No. :1 Job Scheduling Algorithms Date  : 
 

Aim:  
 To write a c program to implement FCFS and SJF job scheduling techniques. 

 
Concepts Used:  
 
Throughput: 
 

Throughput is the measure of the number of processes that are completed per time unit. 
 

Turnaround time: 
 
From the point of view of a particular process, the important criterion is how long it takes 

to execute that process. The interval from the time of submission of a process to the time of 
completion is the turnaround time. Turnaround time is the sum of the periods spent waiting to get 
into memory, waiting in the ready queue, executing on the CPU, and doing I/O. 
 
Waiting time: 

 
Waiting time is the sum of the periods spent waiting in the ready queue. 
 

Response time: 
 
In an interactive system, turnaround time may not be the best criterion. Often, a process 

can produce some output fairly early and can continue computing new results while previous 
results are being output to the user. Thus, another measure is the time from the submission of a 
request until the first response is produced. This measure, called response time, is the time it 
takes to start responding, not the time it takes to output the response. The turnaround time is 
generally limited by the speed of the output device. 
 
 
Scheduling Algorithms: 
 

1. First-Come First-Served Scheduling:  
The process that requests the CPU first is allocated the CPU first. 

  
2. Shortest-Job-First Scheduling:  

When the CPU is available, it is assigned to the process that has the smallest next 
CPU burst. If the next CPU bursts of two processes are the same, FCFS scheduling is 
used to break the tie. 

 

Page | 1  

 



Department of Computer Science and Engineering  2023-2024 

1. First Comes First Serve Scheduling: 
 
#include<stdio.h> 
#include<conio.h> 
 
struct process 
{ 
 char name[10]; 
 int hr,min,sec,burst,wait,arrival,exit; 
}; 
 
void main() 
{ 
 struct process p[20],temp; 
 void read_details_of_process(struct process[],int); 
 void print_details_of_process(struct process[],int,int); 
 int calculate_waiting_time(struct process[],int); 
 int n,total; 
 clrscr(); 
 printf("\nEnter the number of process: "); 
 scanf("%d",&n); 
 read_details_of_process(p,n); 
 total=calculate_waiting_time(p,n); 
 print_details_of_process(p,n,total); 
 getch(); 
} 
 
void read_details_of_process(struct process p[],int n) 
{ 
 int i,j; 
 printf("\nEnter the details of %d processes: ",n); 
 for(i=0;i<n;i++) 
 { 
  printf("\n\nProcess %d:",(i+1)); 
  printf("\nEnter process name: "); 
  scanf("%s",&p[i].name); 
  printf("Enter arrival time: "); 
  printf("\n\tEnter Hour: "); 
  scanf("%d",&p[i].hr); 
  label1: 
  if(p[i].hr<=24) 
  { 
   printf("\tEnter Minute: "); 
   scanf("%d",&p[i].min); 
   label2: 
   if(p[i].min<=60) 

Page | 2  

 



Department of Computer Science and Engineering  2023-2024 

   { 
    printf("\tEnter Second: "); 
    scanf("%d",&p[i].sec); 
    label3: 
    if(p[i].sec<=60) 
    { 
     printf("Enter the burst time(in terms of seconds): "); 
     scanf("%d",&p[i].burst); 
    } 
    else 
    { 
     printf("Enter seconds <= 60: "); 
     scanf("%d",&p[i].sec); 
     goto label3; 
    } 
   } 
   else 
   { 
    printf("Enter Minutes <= 60: "); 
    scanf("%d",&p[i].min); 
    goto label2; 
   } 
  } 
  else 
  { 
   printf("Enter hour <= 24: "); 
   scanf("%d",&p[i].hr); 
   goto label1; 
  } 
  p[i].arrival=p[i].sec+(p[i].min*60)+(p[i].hr*3600); 
 } 
} 
 
int calculate_waiting_time(struct process p[],int n) 
{ 
 struct process temp; 
 int i,j,total=0,t; 
 p[0].exit=p[0].arrival+p[0].burst; 
 for(i=0;i<n-1;i++) 
 { 
  for(j=i+1;j<n;j++) 
  { 
   if(p[i].arrival>p[j].arrival) 
   { 
    temp=p[i]; 
    p[i]=p[j]; 

Page | 3  

 



Department of Computer Science and Engineering  2023-2024 

    p[j]=temp; 
   } 
  } 
 } 
 for(i=0;i<n;i++) 
 { 
  if(i==0) 
   p[i].wait=0; 
  else 
   if(p[i].arrival>p[i-1].exit) 
   { 
    p[i].wait=0; 
    p[i].exit=p[i].arrival+p[i].burst; 
   } 
   else 
    if(p[i].arrival>p[i-1].arrival&&p[i].arrival<p[i-1].exit) 
    { 
     t=p[i].arrival-p[i-1].arrival; 
     p[i].wait=p[i-1].wait-t+p[i-1].burst; 
     p[i].exit=p[i].arrival+p[i].wait+p[i].burst; 
    } 
    else 
    { 
     p[i].wait=p[i-1].wait+p[i-1].burst; 
     p[i].exit=p[i].arrival+p[i].wait+p[i].burst; 
    } 
  total+=p[i].wait; 
 } 
 return total; 
} 
 
void print_details_of_process(struct process p[],int n,int total) 
{ 
 int i,j; 
 clrscr(); 
 printf("\nProcess Name\tArrival Time\tBurst Time\tWaiting Time"); 
 for(i=0;i<n;i++) 
 { 
  printf("\n%s\t\t%d:%d:%d\t\t%d\t\t%d",p[i].name,p[i].hr,p[i].min,p[i].sec,p[i].burst,p[i].wait); 
 } 
 printf("\nTotal Waiting Time: %d",total); 
 printf("\nAverage Waiting Time: %0.2f",(total/(n*1.0))); 
} 
 
 

Page | 4  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input and Output:  
 
Enter the number of process: 4  
 
Enter the details of 4 processes: 
 
Process 1: 
Enter process name: p1 
Enter arrival time: 
        Enter Hour: 4 
        Enter Minute: 10 
        Enter Second: 10 
Enter the burst time(in terms of seconds): 60 
  
Process 2: 
Enter process name: p2 
Enter arrival time: 
        Enter Hour: 4 
        Enter Minute: 10 
        Enter Second: 15 
Enter the burst time(in terms of seconds): 95 
 
Process 3: 
Enter process name: p3 
Enter arrival time: 
        Enter Hour: 4 
        Enter Minute: 10 
        Enter Second: 30 
Enter the burst time(in terms of seconds): 50 
 
Process 4: 
Enter process name: p4 
Enter arrival time: 
        Enter Hour: 5 
        Enter Minute: 12 
        Enter Second: 15 
Enter the burst time(in terms of seconds): 80 
 
Process Name   Arrival Time   Burst Time      Waiting Time 

p1              4:10:10          60                 0 
p2              4:10:15          95                 55 
p3              4:10:30          50                135 
p4              5:12:15          80                 0 

 
Total Waiting Time: 190 
Average Waiting Time: 47.50 

Page | 5  

 



Department of Computer Science and Engineering  2023-2024 

 2. Shortest Job First Scheduling 
 
#include<conio.h> 
 
struct process 
{ 
 char name[10]; 
 int burst,wait; 
}; 
 
void main() 
{ 
 void read_details_of_process(struct process[],int); 
 int calculate_waiting_time(struct process[],int); 
 void print_details_of_process(struct process[],int,int); 
 struct process p[20]; 
 int total,n; 
 clrscr(); 
 printf("\nEnter the number of process: "); 
 scanf("%d",&n); 
 read_details_of_process(p,n); 
 total=calculate_waiting_time(p,n); 
 print_details_of_process(p,n,total); 
 getch(); 
} 
 
void read_details_of_process(struct process p[],int n) 
{ 
 int i,j; 
 printf("\nEnter the details of %d processes: ",n); 
 for(i=0;i<n;i++) 
 { 
  printf("\n\nProcess %d:",(i+1)); 
  printf("\nEnter process name: "); 
  scanf("%s",&p[i].name); 
  printf("Enter the burst time: "); 
  scanf("%d",&p[i].burst); 
 } 
} 
 
int calculate_waiting_time(struct process p[],int n) 
{ 
 int i,j,t,total=0; 
 struct process temp; 
 for(i=0;i<n-1;i++) 
 { 

Page | 6  

 



Department of Computer Science and Engineering  2023-2024 

  for(j=i+1;j<n;j++) 
  { 
   if(p[i].burst>p[j].burst) 
   { 
    temp=p[i]; 
    p[i]=p[j]; 
    p[j]=temp; 
   } 
  } 
 } 
 for(i=0;i<n;i++) 
 { 
  if(i==0) 
   p[i].wait=0; 
  else 
   p[i].wait=p[i-1].wait+p[i-1].burst; 
   total+=p[i].wait; 
 } 
 return total; 
} 
 
void print_details_of_process(struct process p[],int n,int total) 
{ 
 int i; 
 clrscr(); 
 printf("\nProcess Name\tBurst Time\tWaiting Time"); 
 for(i=0;i<n;i++) 
 { 
  printf("\n%s\t\t%d\t\t%d",p[i].name,p[i].burst,p[i].wait); 
 } 
  printf("\nTotal Waiting Time: %d",total); 
  printf("\nAverage Waiting Time: %0.2f",(total/(n*1.0))); 
}

Page | 7  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input and Output: 
  
Enter the number of process: 4 
 
Enter the details of 4 processes: 
 
Process 1: 
Enter process name: p1 
Enter the burst time: 60 
 
Process 2: 
Enter process name: p2 
Enter the burst time: 35 
 
Process 3: 
Enter process name: p3 
Enter the burst time: 15 
 
Process 4: 
Enter process name: p4 
Enter the burst time: 75 
 
Process Name    Burst Time      Waiting Time 

p3               15                 0 
p2               35                15 
p1               60         50 
p4               75                 110 

 
Total Waiting Time: 175 
Average Waiting Time: 43.75  
 
 

 

 

 

Result: 

Thus, First Comes First Served Scheduling and Shortest Job First Scheduling algorithms 
have been implemented in C language and tested for various sample inputs. 

Page | 8  

 



Department of Computer Science and Engineering  2023-2024 

 

Ex. No. :2 Disk Scheduling Algorithms Date  : 
 
 
Aim: 

To write c programs to implement FCFS and SSTF, disk scheduling techniques 
 
Concepts Used: 
  
First Come First Served Scheduling:  

The FCFS algorithm selects the request based on the first come arrival basis.  
 
Shortest-Seek-Time-First Scheduling:  

The SSTF algorithm selects the request with the minimum seek time from the current 
head position. Since seek time increases with the number of cylinders traversed by the head, 
SSTF chooses the pending request closest to the current head position. 
 

First-Come First-Served Scheduling 

#include<stdio.h> 
#include<conio.h> 
#include<math.h> 
 
void main() 
{ 
 int i,sum=0,n,st; 
 int a[20],b[20],dd[20]; 
 clrscr(); 
 
 do 
 { 
  printf("\nEnter the block number between 0 and 200: "); 
  scanf("%d",&st); 
 }while((st>=200)||(st<0)); 
 
 printf("\nOur disk head is on the %d block",st); 
 a[0]=st; 
 printf("\nEnter the no. of request: "); 
 scanf("%d",&n); 
 printf("\nEnter request: "); 

Page | 9  

 



Department of Computer Science and Engineering  2023-2024 

 for(i=1;i<=n;i++) 
 { 
  printf("\nEnter %d request: ",i); 
  scanf("%d",&a[i]); 
  do 
  { 
   if((a[i]>200)||(a[i]<0)) 
   { 
    printf("\nBlock number must be between 0 and 200!"); 
   } 
  }while((a[i]>200)||(a[i]<0)); 
 } 
 
 for(i=0;i<=n;i++) 
  dd[i]=a[i]; 
 printf("\n\t\tFIRST COME FIRST SERVE: "); 
 printf("\nDISK QUEUE:"); 
 
 for(i=0;i<=n;i++) 
  printf("\t%d",a[i]); 
 printf("\n\nACCESS ORDER:"); 
 
 for(i=0;i<=n;i++) 
 { 
  printf("\t%d",dd[i]); 
  if(i!=n) 
   sum+=abs(dd[i]-dd[i+1]); 
 } 
 printf("\n\nTotal no. of head movements: %d",sum); 
 getch(); 
} 
 
Sample Input and Output: 
  
Enter the block number between 0 and 200: 53 
 
Our disk head is on the 53 block 
Enter the no. of request: 8 
 
Enter request: 
 
Enter 1 request: 98 
 
Enter 2 request: 183 
 
Enter 3 request: 37 

Page | 10  

 



Department of Computer Science and Engineering  2023-2024 

Enter 4 request: 122 
 
Enter 5 request: 14 
 
Enter 6 request: 124 
 
Enter 7 request: 65 
 
Enter 8 request: 67  
 
First Come First Served:  
 
Disk Queue:          53      98      183     37      122     14      124     65    67 
  
 
Access Order:    53      98      183     37      122     14      124     65    67  
 
Total no. of head movements: 640 
 
Shortest-Seek-Time-First Scheduling 
 
#include<stdio.h> 
#include<conio.h> 
#include<math.h> 
 
void main() 
{ 
 int i,j,z,sum=0,c=0,n,n1,st,min; 
 int a[20],b[20],dd[20]; 
 clrscr(); 
 
 do 
 { 
  printf("\nEnter the block number between 0 and 200: "); 
  scanf("%d",&st); 
 }while((st>=200)||(st<0)); 
 printf("\nOur disk head is on the %d block",st); 
 a[0]=st; 
 printf("\nEnter the no. of request: "); 
 scanf("%d",&n); 
 printf("\nEnter request: "); 
 
 for(i=1;i<=n;i++) 
 { 
  printf("\nEnter %d request: ",i); 
  scanf("%d",&a[i]); 

Page | 11  

 



Department of Computer Science and Engineering  2023-2024 

 do 
  { 
   if((a[i]>200)||(a[i]<0)) 
   { 
    printf("\nBlock number must be between 0 and 200!"); 
   } 
  }while((a[i]>200)||(a[i]<0)); 
 } 
 
 for(i=0;i<=n;i++) 
  dd[i]=a[i]; 
 n1=n; 
 b[0]=dd[0]; 
 st=dd[0]; 
 
 while(n1>0) 
 { 
  j=1; 
  min=abs(dd[0]-dd[1]); 
  for(i=2;i<n1+1;i++) 
  { 
   if(abs(st-dd[i])<=min) 
   { 
    min=abs(st-dd[i]); 
   j=i; 
   } 
  } 
  c++; 
  b[c]=dd[j]; 
  st=dd[j]; 
  dd[0]=dd[j]; 
  --n1; 
 
  for(z=j;z<n1+1;z++) 
   dd[z]=dd[z+1]; 
  dd[z]='\0'; 
 } 
 printf("\n\t\tSHORTEST SEEK TIME FIRST: "); 
 printf("\nDISK QUEUE:"); 
 for(i=0;i<=n;i++) 
  printf("\t%d",a[i]); 
 printf("\n\nACCESS ORDER:"); 
 for(i=0;i<=c;i++) 
 { 
 printf("\t%d",b[i]); 
 if(i!=c) 

Page | 12  

 



Department of Computer Science and Engineering  2023-2024 

  sum+=abs(b[i]-b[i+1]); 
 } 
 printf("\n\nTotal no. of head movements: %d",sum); 
 getch(); 
} 
 
Sample Input and Output: 
 
Enter the block number between 0 and 200: 53  
 
Our disk head is on the 53 block 
Enter the no. of request: 8 
 
Enter request: 
Enter 1 request: 98 
 
Enter 2 request: 183 
 
Enter 3 request: 37 
 
Enter 4 request: 122 
 
Enter 5 request: 14 
 
Enter 6 request: 124 
 
Enter 7 request: 65 
 
Enter 8 request: 67 
 
Shortest Seek Time First:    
 
Disk Queue:     53      98      183     37      122     14      124     65      67 
 
Access Order:   53      65      67      37      14      98      122     124   183 
 
Total no. of head movements: 236 
 
 
 
Result: 

Thus, C programs to implement different disk scheduling techniques have been written 
successfully and tested with various samples. 

Page | 13  

 



Department of Computer Science and Engineering  2023-2024 

 

Ex. No. :3 Memory Allocation Techniques Date  : 
 
Aim: 

To write C programs to implement First Fit, Best Fit, and Worst Fit memory allocation 
techniques. 
 
Concepts Used: 
 
1. First fit. Allocate the first hole that is big enough. Searching can start either at the beginning 

of the set of holes or where the previous first-fit search ended. We can stop searching as soon 
as we find a free hole that is large enough. 

2. Best fit. Allocate the smallest hole that is big enough. We must search the entire list, unless 
the list is ordered by size. This strategy produces the smallest leftover hole. 

3. Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is sorted 
by size. This strategy produces the largest leftover hole, which may be more useful than the 
smaller leftover hole from a best-fit approach.  

 

1) First Fit 

#include<stdio.h> 
#include<conio.h> 
 
int next=0,f1,p,c,l,sum; 
int asize[30],fsize[30],f1size[30],bsize[30]; 
 
void main() 
{ 
 char ch; 
 int blsize,i,k; 
 void first_fit(int); 
 clrscr(); 
 printf("\nEnter the number of free block: "); 
 scanf("%d",&f1); 
 sum=50; 
 printf("\nEnter within the width 480."); 
 printf("\nEnter width within the limit.\n"); 
 for(i=0;i<f1;i++) 
 { 
  printf("Enter the size of the block%d: ",i); 
  scanf("%d",&fsize[i]); 
  if(fsize[i]>481) 
  { 

Page | 14  

 



Department of Computer Science and Engineering  2023-2024 

   printf("\nExceeding the limit, re-enter the value!"); 
   continue; 
  } 
  f1size[i]=fsize[i]; 
  asize[i]=0; 
  sum=sum+fsize[i]; 
 } 
 printf("\nEnter the number of process: "); 
 scanf("%d",&p); 
 for(i=0;i<p;i++) 
 { 
  printf("Enter the size of allocated memory process%d: ",i); 
  scanf("%d",&bsize[i]); 
 } 
 for(i=0;i<p;i++) 
 first_fit(bsize[i]); 
 getch(); 
} 
 
void first_fit(int n) 
{ 
 int k=0,i,s1; 
 for(i=0;i<f1;i++) 
 { 
  if(fsize[i]>=n) 
  { 
   asize[i]=asize[i]+n; 
   next=i+1; 
   printf("\n\nMEMORY ALLOCATION IN BLOCK:%d ",i); 
   s1=50; 
   for(l=0;l<i;l++) 
    s1=s1+fsize[l]+asize[l]; 
   printf("\nMemory allocated for process:%d ",asize[l]); 
   fsize[i]=-n; 
   k=1; 
   break; 
  } 
 } 
 if(k==0) 
  printf("\n\nNo matching block for %d \n",n); 
 } 
 

Page | 15  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input and Output: 
 
Enter the number of free block: 3 
Enter within the width 480. 
 
Enter width within the limit. 
 
Enter the size of the block 0: 100 
Enter the size of the block 1: 50 
Enter the size of the block 2: 200 
 
Enter the number of process: 3 
 
Enter the size of allocated memory process 0: 200 
Enter the size of allocated memory process 1: 250 
Enter the size of allocated memory process 2: 100 
 
Memory Allocation in Block:2 
Memory allocated for process:200 
 
No matching block for 250 
 
Memory Allocation in Block:0 
Memory allocated for process:100 
 

2) Best Fit 

#include<stdio.h> 
#include<conio.h> 
 
int next=0,f1,p,c,l,sum; 
int asize[30],fsize[30],f1size[30],bsize[30]; 
 
void main() 
{ 
 char ch; 
 int blsize,i,k; 
 void best_fit(int); 
 clrscr(); 
 printf("\nEnter the number of free block: "); 
 scanf("%d",&f1); 
 sum=50; 
 printf("\nEnter within the width 480."); 
 printf("\nEnter width within the limit.\n"); 
 for(i=0;i<f1;i++) 
 { 

Page | 16  

 



Department of Computer Science and Engineering  2023-2024 

  printf("Enter the size of the block%d: ",i); 
  scanf("%d",&fsize[i]); 
  if(fsize[i]>481) 
  { 
   printf("\nExceeding the limit, re-enter the value!"); 
   continue; 
  } 
  f1size[i]=fsize[i]; 
  asize[i]=0; 
  sum=sum+fsize[i]; 
 } 
 printf("\nEnter the number of process: "); 
 scanf("%d",&p); 
 for(i=0;i<p;i++) 
 { 
  printf("Enter the size of allocated memory process%d: ",i); 
  scanf("%d",&bsize[i]); 
 } 
 for(i=0;i<p;i++) 
 best_fit(bsize[i]); 
 getch(); 
} 
 
void best_fit(int n) 
{ 
 int l,s,k=0,i,s1; 
 int min1=10000; 
 for(i=0;i<=f1;i++) 
 { 
  if((fsize[i]-n)>=0) 
  { 
   s=fsize[i]-n; 
   if(s<min1) 
   { 
    min1=s; 
    k=i+1; 
   } 
  } 
 } 
 if(k!=0) 
 { 
  next=k; 
  fsize[k-1]=min1; 
  asize[k-1]+=n; 
  s1=50; 
   

Page | 17  

 



Department of Computer Science and Engineering  2023-2024 

  for(l=0;l<k-1;l++) 
   s1=s1+fsize[l]+asize[l]; 
  printf("\n\nMemory allocated in block:%d",(k-1)); 
  printf("\nMemory allocated for process:%d",asize[l]); 
 } 
 else 
  printf("\n\nNo matching block for %d",n); 
} 
 

Sample Input and Output: 

Enter the number of free block: 3 
 
Enter within the width 480. 
Enter width within the limit. 
 
Enter the size of the block 0: 100 
Enter the size of the block 1: 50 
Enter the size of the block 2: 200 
 
Enter the number of process: 3 
 
Enter the size of allocated memory process 0: 200 
Enter the size of allocated memory process 1: 250 
Enter the size of allocated memory process 2: 100 
 
Memory allocated in block: 2 
Memory allocated for process: 200 
 
No matching block for 250 
 
Memory allocated in block: 0 
Memory allocated for process: 100 
 
3) Worst Fit 

#include<stdio.h> 
#include<conio.h> 
 
int next=0,f1,p,c,l,sum; 
int asize[30],fsize[30],f1size[30],bsize[30]; 
 
void main() 
{ 
 char ch; 
 int blsize,i,k; 

Page | 18  

 



Department of Computer Science and Engineering  2023-2024 

 void worst_fit(int); 
 clrscr(); 
 printf("\nEnter the number of free block: "); 
 scanf("%d",&f1); 
 sum=50; 
 printf("\nEnter within the width 480."); 
 printf("\nEnter width within the limit.\n"); 
 for(i=0;i<f1;i++) 
 { 
  printf("Enter the size of the block%d: ",i); 
  scanf("%d",&fsize[i]); 
  if(fsize[i]>481) 
  { 
   printf("\nExceeding the limit, re-enter the value!"); 
   continue; 
  } 
  f1size[i]=fsize[i]; 
  asize[i]=0; 
  sum=sum+fsize[i]; 
 } 
 printf("\nEnter the number of process: "); 
 scanf("%d",&p); 
 for(i=0;i<p;i++) 
 { 
  printf("Enter the size of allocated memory process%d: ",i); 
  scanf("%d",&bsize[i]); 
 } 
 for(i=0;i<p;i++) 
 worst_fit(bsize[i]); 
 getch(); 
} 
 
void worst_fit(int n) 
{ 
 int l,s,k=0,i,s1; 
 int max1=0; 
 for(i=0;i<f1;i++) 
 { 
  if((fsize[i]-n)>0) 
  { 
   s=fsize[i]-n; 
   if(s>=max1) 
   { 
    max1=s; 
    k=i+1; 
   } 

Page | 19  

 



Department of Computer Science and Engineering  2023-2024 

  } 
 } 
 if(k!=0) 
 { 
  next=k; 
  fsize[k-1]=max1; 
  asize[k-1]=asize[k-1]+n; 
  s1=50; 
  for(l=0;l<k-1;l++) 
   s1+=fsize[l]+asize[l]; 
  printf("\n\nMemory allocated in block:%d",(k-1)); 
  printf("\nMemory allocated for process:%d",asize[l]); 
 } 
 else 
  printf("\n\nNo matching block for %d",n); 
} 
 

Sample Input and Output: 

Enter the number of free block: 3 
 
Enter within the width 480. 
Enter width within the limit. 
 
Enter the size of the block 0: 100 
Enter the size of the block 1: 50 
Enter the size of the block 2: 200 
 
Enter the number of process: 3 
 
Enter the size of allocated memory process 0: 200 
Enter the size of allocated memory process 1: 250 
Enter the size of allocated memory process 2: 100 
No matching block for 200 
 
No matching block for 250 
 
Memory allocated in block: 2 
Memory allocated for process: 100 
 
 
 
Result: 
 Thus, C programs to implement different Memory Allocation techniques have been 
written successfully and tested with various samples. 

Page | 20  

 



Department of Computer Science and Engineering  2023-2024 

 

Ex. No. :4 Memory Management using Paging Date  : 
 
Aim: 
 

To write a C program to implement the paging technique 
 
Concepts Used: 
 

• Paging is a memory-management scheme that permits the physical address space of a 
process to be noncontiguous. 

• The basic method for implementing paging involves breaking physical memory into 
fixed-sized blocks called frames and breaking logical memory into blocks of the same 
size called pages. 

• Every address generated by the CPU is divided into two parts: a page number (p) and a 
page offset (d). The page number is used as an index into a page table. 

• The page table contains the base address of each page in physical memory. This base 
address is combined with the page offset to define the physical memory address that is 
sent to the memory unit. 

• The size of a page is typically a power of 2. 

Program: 
 
#include<stdio.h> 
#include<conio.h> 
#include<math.h> 
#include<string.h> 
 
void main() 
{ 
 int page_size,log_size,phy_size,no_pages_log,no_frames_phy; 
 int i,j,check,x,frame_no,frame_alloc[50]; 
 int check_pow_2(int); 
 char log_content[50][10],phy_content[50][10];; 
 clrscr(); 
  
 lab: 
 
 printf("\n\nEnter the page size(power of 2): "); 
 scanf("%d",&page_size);  check=check_pow_2(page_size); 
 if(check==0) 
 { 
  printf("\nEnter page size as power of 2."); 

Page | 21  

 



Department of Computer Science and Engineering  2023-2024 

  goto lab; 
 } 
 
 lab1: 
 
 printf("\n\nEnter the logical memory size(power of 2): "); 
 scanf("%d",&log_size); 
 check=check_pow_2(log_size); 
 if(check==0) 
 { 
  printf("\nEnter logical memory size as power of 2."); 
  goto lab1; 
 } 
 no_pages_log=log_size/page_size; 
 printf("\nNo. of pages in logical memory: %d",no_pages_log); 
  
 lab2: 
  
 printf("\n\nEnter the physical memory size(power of 2): "); 
 scanf("%d",&phy_size); 
 check=check_pow_2(phy_size); 
 if(check==0||phy_size<log_size) 
 { 
  printf("\nEnter physical memory size as power of 2 and \ngreater than or equal to logical 
memory size."); 
  goto lab2; 
 } 
 no_frames_phy=phy_size/page_size; 
 printf("\nNo. of frames in physical memory: %d",no_frames_phy); 
 printf("\n\nEnter the contents of logical memory: "); 
 x=0; 
 for(i=0;i<no_pages_log;i++) 
 { 
  for(j=0;j<page_size;j++) 
  { 
   scanf("%s",&log_content[x]); 
   x++; 
  } 
 } 
 clrscr(); 
 x=0; 
 printf("\nLOGICAL MEMORY: "); 
 for(i=0;i<no_pages_log;i++) 
 { 
  printf("\nPAGE%d: ",i); 
  j=0; 

Page | 22  

 



Department of Computer Science and Engineering  2023-2024 

  for(j=0;j<page_size;j++) 
  { 
   printf("\n\tLogical address %d: %s",x,log_content[x]); 
   x++; 
  } 
 } 
 getch(); 
 clrscr(); 
 for(i=0;i<no_frames_phy;i++) 
 { 
  frame_alloc[i]=0; 
 } 
 x=0; 
 for(i=0;i<no_pages_log;i++) 
 { 
   
  lab3: 
  
  printf("\nEnter frame no for page %d(0-%d): ",i,no_frames_phy); 
  scanf("%d",&frame_no); 
  if(frame_no>=no_frames_phy) 
  { 
   printf("\n%d frame is not available.Enter another frame no.",frame_no); 
   goto lab3; 
  } 
  if(frame_alloc[frame_no]==0) 
  { 
   for(j=0;j<page_size;j++) 
   { 
    strcpy(phy_content[(frame_no*page_size)+j],log_content[(i*page_size)+j]); 
    x++; 
   } 
   frame_alloc[frame_no]=1; 
  } 
  else 
  { 
   printf("\n%d frame is already allocated. Enter another frame.",frame_no); 
   goto lab3; 
  } 
 } 
 for(i=0;i<no_frames_phy;i++) 
 { 
  if(frame_alloc[i]==0) 
  { 
   for(j=0;j<page_size;j++) 
   { 

Page | 23  

 



Department of Computer Science and Engineering  2023-2024 

    strcpy(phy_content[(i*page_size)+j],"-"); 
   } 
  } 
 } 
 clrscr(); 
 x=0; 
 printf("\nPHYSICAL MEMORY."); 
 for(i=0;i<no_frames_phy;i++) 
 { 
  printf("\nFRAME%d: ",i); 
  for(j=0;j<page_size;j++) 
  { 
   printf("\n\tPhysical Address%d: %s",x,phy_content[(i*page_size)+j]); 
   x++; 
  } 
  printf("\nPress any key."); 
  getch(); 
 } 
 getch(); 
} 
 
int check_pow_2(int n) 
{ 
 int i=1,flag=0,j; 
 while(1) 
 { 
  j=pow(2,i); 
  if(j==n) 
  { 
   flag=1; 
   break; 
  } 
  if(i==n/2) 
   break; 
  i++; 
 } 
 if(flag==1) 
  return 1; 
 else 
  return 0; 
} 
 

Page | 24  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input and Output: 
 
Enter the page size(power of 2): 4 
 
Enter the logical memory size(power of 2): 16 
 
No. of pages in logical memory: 4 
 
Enter the physical memory size(power of 2): 32 
 
No. of frames in physical memory: 8 
 
Enter the contents of logical memory:  
a 
b  
c  
d  
e  
f 
g  
h  
i  
j  
k  
l  
m  
n  
o  
p 
 
Logical Memory: 
 
PAGE 0: 
 
Logical address 0: a 
Logical address 1: b 
Logical address 2: c 
Logical address 3: d 
 
PAGE 1: 
 
Logical address 4: e 
Logical address 5: f 
Logical address 6: g 
Logical address 7: h 
 

Page | 25  

 



Department of Computer Science and Engineering  2023-2024 

PAGE 2: 
 
Logical address 8: i 
Logical address 9: j 
Logical address 10: k 
Logical address 11: l 
 
PAGE 3: 
 
Logical address 12: m 
Logical address 13: n 
Logical address 14: o 
Logical address 15: p 
 
Enter frame no for page 0(0-8): 5 
Enter frame no for page 1(0-8): 6 
Enter frame no for page 2(0-8): 1 
Enter frame no for page 3(0-8): 2 
 
Physical Memory: 
 
FRAME 0: 
 
Physical Address 0: - 
Physical Address 1: - 
Physical Address 2: - 
Physical Address 3: - 
Press any key. 
 
FRAME 1: 
 
Physical Address 4: i 
Physical Address 5: j 
Physical Address 6: k 
Physical Address 7: l 
Press any key. 
 
FRAME 2: 
 
Physical Address 8: m 
Physical Address 9: n 
Physical Address 10: o 
Physical Address 11: p 
Press any key. 
 

Page | 26  

 



Department of Computer Science and Engineering  2023-2024 

FRAME 3: 
 
Physical Address 12: - 
Physical Address 13: - 
Physical Address 14: - 
Physical Address 15: - 
Press any key. 
 
FRAME 4: 
 
Physical Address 16: - 
Physical Address 17: - 
Physical Address 18: - 
Physical Address 19: - 
Press any key. 
 
FRAME 5: 
 
Physical Address 20: a 
Physical Address 21: b 
Physical Address 22: c 
Physical Address 23: d 
 
FRAME 6: 
 
Physical Address 24: e 
Physical Address 25: f 
Physical Address 26: g 
Physical Address 27: h 
Press any key. 
 
FRAME 7: 
 
Physical Address 28: - 
Physical Address 29: - 
Physical Address 30: - 
Physical Address 31: - 
Press any key 
 
 
 
 
Result: 

Thus, the C program to implement the paging memory management 
technique has been written successfully and tested with various samples. 

Page | 27  

 



Department of Computer Science and Engineering  2023-2024 

 

Ex. No. :5 Memory Management using Segmentation Date  : 
 
Aim: 
 

To write a C program to implement segmentation memory management scheme 
 
Theory: 
 

• Segmentation is a memory-management scheme that supports this user view of memory. 
• A logical address space is a collection of segments. Each segment has a name and a 

length. 
• The addresses specify both the segment name and the offset within the segment. 
• For simplicity of implementation, segments are numbered and are referred to by a 

segment number, rather than by a segment name. 
• The segment number is used as an index to the segment table. 
• The offset of the logical address must be between 0 and the segment limit. 

 
Program: 
 
#include<stdio.h> 
#include<conio.h> 
 
void main() 
{ 
 int no_seg_log,limit[20],base_phy[20],end_phy[20]; 
 int tem[40],i,j; 
 clrscr(); 
 printf("\nEnter the no. of segments in logical memory: "); 
 scanf("%d",&no_seg_log); 
 for(i=0;i<no_seg_log;i++) 
 { 
  printf("\nEnter limit of segment%d: ",i); 
  scanf("%d",&limit[i]); 
  printf("\nEnter base address of segment%d: ",i); 
  scanf("%d",&base_phy[i]); 
  end_phy[i]=base_phy[i]+limit[i]; 
 } 
  printf("\nSEGMENT\tLIMIT\tRANGE"); 
 for(i=0;i<no_seg_log;i++) 
 { 
  printf("\n%d\t%d\t%d - %d",i,limit[i],base_phy[i],end_phy[i]); 
 } 
 getch(); 
} 
 

Page | 28  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input and Output: 
 
Enter the no. of segments in logical memory : 5 
 
Enter limit of segment 0   : 1000 
 
Enter base address of segment 0  : 1400 
 
Enter limit of segment 1   : 400 
 
Enter base address of segment 1  : 6300 
 
Enter limit of segment 2   : 400 
 
Enter base address of segment 2  : 4300 
 
Enter limit of segment 3   : 1100 
 
Enter base address of segment 3  : 3200 
 
Enter limit of segment 4   : 1000 
 
Enter base address of segment 4  : 4700 
 
SEGMENT   LIMIT  RANGE 
 

0   1000   1400 - 2400 
1     400   6300 - 6700 
2     400   4300 - 4700 
3   1100   3200 - 4300 
4   1000   4700 – 5700 

 
 
 
 
 
 
 
 
 
 
Result: 

Thus, the C program to implement segmentation memory management scheme has been 
written successfully and tested with various samples. 

Page | 29  

 



Department of Computer Science and Engineering  2023-2024 

 

Ex. No. :6 Banker’s Safety Algorithm Date  : 
 

Aim: 
 To display the present state of the system is Safe or Unsafe by implementing banker 
algorithm. 
 
Concept: 
 

Deadlock is a situation where in two or more competing actions are waiting f or the other 
to finish, and thus neither ever does. When a new process enters a system, it must declare the 
maximum number of instances of each resource type it needed. This number may exceed the 
total number of resources in the system. When the user request a set of resources, the system 
must determine whether them allocation of each resources will leave the system in safe state. If it 
will the resources are allocation; otherwise the process must wait until some other process 
release the resources. 

 
Data Structure Used: 
 
• Available: A vector of length m indicates the number of available resources of each type. If 

Available[j] equals k, there are k instances of resource type Rj available. 
 

• Max: An n x m matrix defines the maximum demand of each process. If M[i][j] equals k, 
then process Pi may request at most k instances of resource type Rj 
 

• Allocation: An n x m matrix defines the number of resources of each type currently allocated 
to each process. If Allocation[i][j] equals k, then process Pi is currently allocated k instances 
of resource type Rj. 
 

• Need: An n x m matrix indicates the remaining resource need of each process. If Need[i][j] 
equals k, then process Pi may need k more instances of resource type Rj to complete its task. 
Note that Need[i][j] equals Max[i][j]-Allocation[i][j]. 

 
Algorithms: 
 
i. Safety Algorithm: 

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize Work = Available and Fnish[i] = false for i = 0 , 1 , ..., n - l . 

2. Find an i such that both 
Finish[i] ==false 
Need <= Work 
If no such i exists, go to step 4. 

3. Work = Work + Allocation, 
Finish[i] = true 
Go to step 2. 

4. If Finish[i] == true for all. i, then the system is in a safe state. 
Page | 30  

 



Department of Computer Science and Engineering  2023-2024 

ii. Resource Request Algorithm: 
 

1. If Requesti <= Needi, go to step 2. Otherwise, raise an error condition, since the process 
has exceeded its maximum claim. 

2. If Requesti <= Available, go to step 3. Otherwise, Pi must wait, since the resources are 
not available. 

3. Have the system pretend to have allocated the requested resources to process Pi by 
modifying the state as follows: 

Available = Available - Requesti 
Allocationi = Allocationi + Requesti 
Needi = Needi - Requesti 

4. If the resulting resource-allocation state is safe, the transaction is completed, and process 
Pi is allocated its resources. However, if the new state is unsafe, then Pi, must wait for 
Requesti, and the old resource-allocation state is restored. 

 
Program: 
 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int allocated[15][15],max[15][15],need[15][15],avail[15],tres[15],work[15],flag[15]; 
 int pno,rno,i,j,prc,count,t,total; 
 count=0; 
 clrscr(); 
 printf("\n Enter number of process:"); 
 scanf("%d",&pno); 
 printf("\n Enter number of resources:"); 
 scanf("%d",&rno); 
 for(i=1;i<=pno;i++) 
 { 
  flag[i]=0; 
 } 
 printf("\n Enter total numbers of each resources:"); 
 for(i=1;i<=rno;i++) 
  scanf("%d",&tres[i]); 
 printf("\n Enter Max resources for each process:"); 
 for(i=1;i<=pno;i++) 
 { 
  printf("\n for process %d:",i); 
  for(j=1;j<= rno;j++) 
   scanf("%d",&max[i][j]); 
 } 
 printf("\n Enter allocated resources for each process:"); 

Page | 31  

 



Department of Computer Science and Engineering  2023-2024 

 for(i=1;i<= pno;i++) 
 { 
  printf("\n for process %d:",i); 
  for(j=1;j<= rno;j++) 
   scanf("%d",&allocated[i][j]); 
 } 
 printf("\n available resources:\n"); 
 for(j=1;j<= rno;j++) 
 { 
  avail[j]=0; 
  total=0; 
  for(i=1;i<= pno;i++) 
  { 
   total+=allocated[i][j]; 
  } 
  avail[j]=tres[j]-total; 
  work[j]=avail[j]; 
  printf(" %d \t",work[j]); 
 } 
 do 
 { 
  for(i=1;i<= pno;i++) 
  { 
   for(j=1;j<= rno;j++) 
   { 
    need[i][j]=max[i][j]-allocated[i][j]; 
   } 
  } 
  printf("\n Allocated matrix Max need"); 
  for(i=1;i<= pno;i++) 
  { 
   printf("\n"); 
   for(j=1;j<= rno;j++) 
   { 
    printf("%4d",allocated[i][j]); 
   } 
   printf("|"); 
   for(j=1;j<= rno;j++) 
   { 
    printf("%4d",max[i][j]); 
   } 
   printf("|"); 
   for(j=1;j<= rno;j++) 
   { 
    printf("%4d",need[i][j]); 
   } 

Page | 32  

 



Department of Computer Science and Engineering  2023-2024 

  } 
  prc=0; 
  for(i=1;i<= pno;i++) 
  { 
   if(flag[i]==0) 
   { 
    prc=i; 
    for(j=1;j<= rno;j++) 
    { 
     if(work[j]< need[i][j]) 
     { 
      prc=0; 
      break; 
     } 
    } 
   } 
   if(prc!=0) 
    break; 
  } 
  if(prc!=0) 
  { 
   printf("\n Process %d completed",i); 
   count++; 
   printf("\n Available Resources:"); 
   for(j=1;j<= rno;j++) 
   { 
    work[j]+=allocated[prc][j]; 
    allocated[prc][j]=0; 
    max[prc][j]=0; 
    flag[prc]=1; 
    printf(" %d",work[j]); 
   } 
  } 
 }while(count!=pno&&prc!=0); 
 if(count==pno) 
  printf("\nThe system is in a Safe State!!"); 
 else 
  printf("\nThe system is in an Unsafe State!!"); 
 getch(); 
} 
 

Page | 33  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input/ Output: 
 
Enter number of process:5 
Enter number of resources:3 
Enter total numbers of each resources:10 5 7 
Enter Max resources for each process: 
for process 1:7 5 3 
 
for process 2:3 2 2 
 
for process 3:9 0 2 
 
for process 4:2 2 2 
 
for process 5:4 3 3 
 
Enter allocated resources for each process: 
for process 1:0 1 0 
 
for process 2:3 0 2 
 
for process 3:3 0 2 
 
for process 4:2 1 1 
 
for process 5:0 0 2 
 
Available Resources: 
2  3  0 
 
      Allocated   Max   Need 

0 1 0   7 5 3   7 4 3 
3 0 2   3 2 2   0 2 0 
3 0 2   9 0 2   6 0 0 
2 1 1   2 2 2   0 1 1 
0 0 2   4 3 3   4 3 1 

 
Process 2 completed 
Available Resources: 5 3 2 
 
      Allocated   Max   Need 

0 1 0   7 5 3   7 4 3 
0 0 0   0 0 0   0 0 0 
3 0 2   9 0 2   6 0 0 
2 1 1   2 2 2   0 1 1 
0 0 2   4 3 3   4 3 1 

Page | 34  

 



Department of Computer Science and Engineering  2023-2024 

Process 4 completed 
Available Resources: 7 4 3 
 
      Allocated   Max   Need 

0 1 0   7 5 3   7 4 3 
0 0 0   0 0 0   0 0 0 
3 0 2   9 0 2   6 0 0 
0 0 0   0 0 0   0 0 0 
0 0 2   4 3 3   4 3 1 

Process 1 completed 
Available Resources: 7 5 3 
 
      Allocated   Max   Need 

0 0 0   0 0 0   0 0 0 
0 0 0   0 0 0   0 0 0 
3 0 2   9 0 2   6 0 0 
0 0 0   0 0 0   0 0 0 
0 0 2   4 3 3   4 3 1 

Process 3 completed 
Available Resources: 10 5 5 
     
     Allocated   Max   Need 

0 0 0   0 0 0   0 0 0 
0 0 0   0 0 0   0 0 0 
0 0 0   0 0 0   0 0 0 
0 0 0   0 0 0   0 0 0 
0 0 2   4 3 3   4 3 1 

Process 5 completed 
Available Resources: 10 5 7 
 
The system is in a safe state!! 
 
Case 2: 
 
Enter Number of Process: 5 
 
Enter Number of Resources: 3 
Enter total number of each resources: 10 5 7 
Enter Max resources for each Process: 
 for process 1: 7 5 3 
 
 for process 2: 3 2 2 
 
 for process 3: 9 0 2 
 
 for process 4: 2 2 2 

Page | 35  

 



Department of Computer Science and Engineering  2023-2024 

 for process 5: 4 3 3 
 
Enter allocated resources for each process: 
 for process 1: 0 3 0 
 
 for process 2: 3 0 2 
 
 for process 3: 3 0 2 
 
 for process 4: 2 1 1 
 
 for process 5: 0 0 2 
 
Available Resources: 
2  1  0 
 
     Allocated   Max  Need 
 

0 3 0   7 5 3   7 2 3 
3 0 2   3 2 2   0 2 0 
3 0 2   9 0 2   6 0 0 
2 1 1   2 2 2   0 1 1 
0 0 2   4 3 3   4 3 1 

 
The System is in an Unsafe State!! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Result: 

Thus, a C program to display the present state of the system in Safe or Unsafe by 
implementing the banker algorithm is written and tested with various cases. 

Page | 36  

 



Department of Computer Science and Engineering  2023-2024 

 

Ex. No. :7 Dining Philosopher Problem Date  : 
 
Aim: 
 To write a C program to implement the Dining Philosopher Problem. 
 
Concept: 
 

Consider eight philosophers who spend their lives thinking and eating. The philosophers 
share a circular table surrounded by eight chairs, each belonging to one philosopher. In the center 
of the table is a bowl of rice, and the table is laid with eight single chopsticks. When a 
philosopher thinks, he does not interact with his colleagues. From time to time, a philosopher 
gets hungry and tries to pick up the two chopsticks that are closest to him. A philosopher cannot 
pick up a chopstick that is already in the hand of a neighbour. When a hungry philosopher has 
both his chopsticks at the same time, he eats without releasing his chopsticks. When he is 
finished eating, he puts down both of his chopsticks and starts thinking again. A Philosopher 
may pick up his chopsticks only if both of them are available in order to avoid deadlock. 
 
Program: 
 
/* Dining Philosopher */ 
 
#include<stdio.h> 
#include<conio.h> 
#include<string.h> 
 
char state[10]; 
void pickup(int); 
void test(int); 
void putdown(int); 
void print_status(); 
char pname[10][10]; 
char hun[10]; 
int no_phil,max_eater; 
 
void main() 
{ 
 int i,j,k,n,pos,no_eat,round=1; 
 char c; 
 clrscr(); 
 printf("\nEnter number of philosophers: "); 
 scanf("%d",&no_phil); 
 max_eater=no_phil/2; 
 printf("\n%d philosophers can eat at a time to avoid deadlock.",max_eater); 
 printf("\nEnter %d philosopher's names one by one: ",no_phil); 
 for(i=0;i<no_phil;i++) 

Page | 37  

 



Department of Computer Science and Engineering  2023-2024 

 { 
  scanf("%s",pname[i]); 
 } 
 for(i=0;i<no_phil;i++) 
  state[i]='t'; 
 for(i=0;i<no_phil;i++) 
 { 
  printf("\nposition %d:%s",i,pname[i]); 
 } 
 getch(); 
 while(1) 
 { 
  clrscr(); 
  printf("\nROUND%d",round); 
  printf("\n-------"); 
  printf("\nstatus: "); 
  print_status(); 
  no_eat=0; 
  for(j=0;j<no_phil;j++) 
  { 
   if(state[j]=='h') 
   { 
    pickup(j); 
    if(state[j]=='e') 
     no_eat++; 
   } 
  } 
  printf("\nEnter %d philosophers who wants to eat: ",(max_eater-no_eat)); 
  for(i=0;i<(max_eater-no_eat);i++) 
  { 
   lab: 
    printf("\n\nEnter hungry philosopher%d: ",(i+1)); 
    scanf("%s",hun); 
    for(j=0;j<no_phil;j++) 
    { 
     k=strcmp(pname[j],hun); 
     if(k==0) 
     { 
      pos=j; 
      break; 
     } 
    } 
    pickup(pos); 
    if(state[pos]=='h') 
     goto lab; 
  } 

Page | 38  

 



Department of Computer Science and Engineering  2023-2024 

  getch(); 
  clrscr(); 
  printf("\nCurrent status: "); 
  print_status(); 
  for(j=0;j<no_phil;j++) 
  { 
   if(state[j]=='e') 
   { 
    putdown(j); 
   } 
  } 
  printf("\nDo you want to continue?(y/n): "); 
  c=getch(); 
  if(c=='n'||c=='N') 
   break; 
  else 
   round++; 
 } 
 getch(); 
} 
 
void pickup(int i) 
{ 
 state[i]='h'; 
 test(i); 
} 
 
void print_status() 
{ 
 int i; 
 printf("\nPHILOSOPHER\tSTATE"); 
 for(i=0;i<no_phil;i++) 
 { 
  printf("\n%s\t\t%c",pname[i],state[i]); 
 } 
} 
 
void test(int i) 
{ 
 if((state[(i+(no_phil-1))%no_phil]!='e')&&(state[i]=='h')&&(state[(i+1)%no_phil]!='e')) 
 { 
  state[i]='e'; 
 } 
 if(state[i]!='e') 
  printf("\n%s must wait since her neighbour is eating",pname[i]); 
 else  

Page | 39  

 



Department of Computer Science and Engineering  2023-2024 

  if(state[i]=='e') 
   printf("\nHungry philosopher %s is granted to eat",pname[i]); 
} 
 
void putdown(int i) 
{ 
 state[i]='t'; 
} 
 
Sample Input/ Output: 
 
Enter number of philosophers: 8 
4 philosophers can eat at a time to avoid deadlock. 
Enter 8 philosopher's names one by one:  
a 
b 
c 
d 
e 
f 
g 
h 
 
position 0:a 
position 1:b 
position 2:c 
position 3:d 
position 4:e 
position 5:f 
position 6:g 
position 7:h 
 
ROUND1 
------- 
status: 
 
PHILOSOPHER        STATE 

a    t 
b    t 
c    t 
d    t 
e    t 
f    t 
g    t 
h    t 

Enter 4 philosophers who wants to eat: 

Page | 40  

 



Department of Computer Science and Engineering  2023-2024 

Enter hungry philosopher1: a 
Hungry philosopher a is granted to eat 
Enter hungry philosopher2: c 
Hungry philosopher c is granted to eat 
 
Enter hungry philosopher3: d 
d must wait since her neighbour is eating 
 
Enter hungry philosopher3: e 
Hungry philosopher e is granted to eat 
 
Enter hungry philosopher4: g 
Hungry philosopher g is granted to eat 
 
Current status: 
 
PHILOSOPHER         STATE 

a    e 
b    t 
c    e 
d    h 
e    e 
f    t 
g    e 
h    t 
 

Do you want to continue?(y/n): y 
 
ROUND2 
------- 
status: 
 
PHILOSOPHER         STATE 

a    t 
b    t 
c    t 
d    h 
e    t 
f    t 
g    t 
h    t 
 

Hungry philosopher d is granted to eat 
 
Enter 3 philosophers who wants to eat: 

Page | 41  

 



Department of Computer Science and Engineering  2023-2024 

Enter hungry philosopher1: e 
e must wait since her neighbour is eating 
 
Enter hungry philosopher1: f 
Hungry philosopher f is granted to eat 
 
Enter hungry philosopher2: h 
Hungry philosopher h is granted to eat 
 
Enter hungry philosopher3: b 
Hungry philosopher b is granted to eat 
 
Current status: 
 
PHILOSOPHER         STATE 

a    t 
b    e 
c    t 
d    e 
e    h 
f    e 
g    t 
h    e 
 

Do you want to continue?(y/n):n 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Result: 

Thus, a C program to implement the Dining Philosopher Problem is written and tested 
with various inputs. 

Page | 42  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :8 Given Number is Odd or Even Date  : 
 
Aim: 
 To write a Unix Shell script to display the given number is odd or even. 
 
Algorithm: 

1. Start. 
2. Get the number from the user. 
3. Divide the given number by 2. 
4. If the remainder is zero display “even” otherwise display “odd”. 
5. Stop. 

 
Source Code: 
 

clear 
echo enter the number 
read a 
r=$(($a % 2)) 
if [ $r -eq 0 ] 
then 
echo $a is even 
else 
echo $a is odd 
fi 

 
Sample Input and Output: 
 
[annex]$ sh ex8.sh 
enter the number 
10 
10 is even 
[annex]$ sh ex8.sh 
enter the number 
7 
7 is odd 
 
Result: 
 Thus, the Unix Shell script to display the given number is odd or even is written and 
output is verified.  

Page | 43  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :9 Displaying Leap year or Not Date  : 
 
Aim: 
 To write a Unix Shell script to display the given year is leap year or not. 
 
Algorithm: 

1. Start. 
2. Get the year. 
3. Divide the year by 4. 
4. If the remainder is zero display “leap year”, otherwise display “not a leap year” 
5. Stop. 

 
Source Code: 
 
clear 
echo enter the year 
read year 
r=$(($year % 4)) 
if [ $r -eq 0 ] 
then 
echo $year is leap year 
else 
echo $year is not leap year 
fi 
 
Sample Input and Output: 
 
 
[annex]$ sh ex9.sh 
 
enter the year 
2000 
2000 is leap year 
 
[annex]$ sh ex9.sh 
 
enter the year 
2001 
2001 is not leap year 
 
Result: 
 Thus, a Unix Shell script to display the given year is leap year or not is written and output 
is verified. 
 

Page | 44  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :10 Factorial calculation Date  : 
 
Aim: 
 To write a Unix shell Script to find the factorial of a given number. 
 
Algorithm: 

1. Start. 
2. Get a number. 
3. Multiply all the numbers from 1 to the given number and display the value. 
4. Stop. 

 
Source Code: 
 
clear 
echo "Enter the number" 
read n 
a=1 
f=1 
while [ $a -le $n ] 
do 
f=`expr $f \* $a` 
a=`expr $a + 1` 
done 
echo "The factorial value is $f" 
 
Sample Input and Output: 
 
[annex]$ sh ex10.sh 
 
Enter the number 
5 
The factorial value is 120 
 
Result: 
 Thus, a Unix shell Script to find the factorial of a given number is written and output is 
verified. 
 
 

Page | 45  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :11 

nCr Computation Date  : 
 
Aim: 
 To write a shell script performs nCr calculation using recursion. 
Algorithms: 

1. Start. 
2. Read values for n and r. 
3. Pass the parameters n, r, (n-r) to the user defined factorial function and store the 

returned values in nf, rf, nrf respectively. 
4. Apply the following nCr 

formula:res=nf\(rf*nrf) 
5. Print res. 
6. Stop. 

 
Source code: 
fact() 
{ 
i=1 
a=1 
while [ $i -le $x ] 
do 
   a=`expr $a \* $i` 
   i=`expr $i + 1` 
done 
} 
 
echo Enter the N value: 
read n 
echo Enter the R value: 
read r 
x=$n 
fact 
nf=$a 
x=$r 
fact 
rf=$a 
x=`expr $n - $r` 
fact 
nrf=$a 
res=`expr $rf \* $nrf` 
res=`expr $nf / $res` 

  echo "The Combination of $n C $r is $res. " 

Page | 46  

 



Department of Computer Science and Engineering  2023-2024 

Output: 
 
Enter the N value: 5 
Enter the R value: 4 
 
The combination of 5 c 4 is 5 
 
Result: 

Thus the shell script for above program was written and verified. 

Page | 47  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :12 Extra time Pay Computation Date  : 

 
Aim: 
 To find the extra pay of an employee who works more than allotted working hours a day. 
 
Algorithm: 
 

1. Start. 
2. Get the name and total work time of an employee. 
3. Get the allotted working hour and cost per extra hour worked. 
4. If the working time is greater than the allotted working hours, find the extra hours 

worked and multiply it with the cost per hour and display it, otherwise, display ‘No 
overtime’. 

5. Stop. 
 
Source Code: 
 
clear 
echo Enter the no of employee 
read n 
while [ $n -gt 0 ] 
do 
echo Enter the name 
read name 
echo Enter the idno 
read idno 
echo Enter the total work time 
read twrktime 
echo Enter the actual time 
read actualtime 
echo Enter the cost 
read cost 
if [ $twrktime -gt $actualtime ] 
then 
overtime=`expr $twrktime - $actualtime` 
totalovercost=`expr $overtime \* $cost` 
echo The over time is $overtime 
echo The extra cost is $totalovercost 
else 
echo No overtime 
fi 
n=`expr $n - 1` 
done 
 

Page | 48  

 



Department of Computer Science and Engineering  2023-2024 

Sample Input and Output: 
 
[annex]$ sh ex12.sh 
 
Enter the no of employee 
1 
Enter the name 
Anbalagan 
Enter the idno 
04 
Enter the total work time 
15 
Enter the actual time 
8 
Enter the cost 
150 
The over time is 7 
The extra cost is 1050 
 
Result: 
 Thus, the extra pay of an employee who works more than allotted working hours a day is 
written and output verified. 

Page | 49  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :13 Arranging the numbers using awk command Date  : 
 
Aim: 

To write a Unix shell script to arrange the numbers using awk command. 
 
Algorithm: 
 

1. Start. 
2. Read n numbers and store them in array a (i.e a[1],a[2],.etc) initialize i=1 
3. Display menu 

1. Ascending order 
2. Descending menu 

Read choice (say choice) 
4. if choice=1 repeat step 5 until i=n 
5. j=1 Repeat until j=n 

if a[i]>a[j] t=a[i] 
a[j]=t 

6. if choice =2 repeat step 7 until i=n 
7. j=1 Repeat until j=n 

if a[i] < a[j] t=a[i] 
a[i]= 
a[j] 
a[j]=t 

8. Print the numbers. 
9. Stop 

 
Source code: 
 
ch=1 
while test $ch -le 4 
do 
echo "1.Ascending order" 
echo "2.Descending order" 
echo "3.Exit" 
echo "Enter your choice" 
read ch 
case $ch in 
 
1)awk 'BEGIN { 
printf "Enter the no. of data" 
getline n 
printf "Enter the element" 
for(i=0;i<n;i++) 
{ 

Page | 50  

 



Department of Computer Science and Engineering  2023-2024 

getline s[i] 
} 
for(i=0;i<n;i++) 
{ 
for(j=i+1;j<n;j++) 
{ 
if( s[i] > s[j]) 
{            
t=s[i] 
s[i]=s[j] 
s[j]=t 
} 
} 
} 
printf "Ascending order is" 
for(i=0;i<n;i++) 
printf"%d\n",s[i] 
}';; 
 
2)awk 'BEGIN{ 
printf "Enter the no. of data" 
getline n 
printf "Enter the element" 
for(i=0;i<n;i++) 
{ 
getline s[i] 
} 
for(i=0;i<n;i++) 
{ 
for(j=i+i;j<n;j++) 
{ 
if (s[i] < s[j]) 
{ 
t=s[i] 
s[i]=s[j] 
s[j]=t 
} 
} 
} 
printf "Descending order is" 
for(i=0;i<n;i++) 
printf "%d\n",s[i] 
}';; 
3)exit;; 
esac 

done

Page | 51  

 



Department of Computer Science and Engineering  2023-2024 

Output: 
1.Ascending 
2.Descending 
3.Exit 
 
Enter choice: 1 
Enter no of data 5 
Enter element 89 76 23 34 14 
 
The ascending order is 
14 
23 
34 
76 
89 
 
1.Ascending 
2.Descending 
3.Exit 
 
Enter choice: 2 
Enter no of data 5 
Enter element 
23 
34 
12 
56 
45 
 
The descending order is 
56 
45 
34 
23 
12 
 
1.Ascending 
2.Descending 
3.Exit 
Enter choice: 4 
 
Result: 

Thus, the above shell script for sorting the numbers using ‘awk’ is written and output is 
verified. 

Page | 52  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :14 Number to word conversion Date  : 
 
Aim: 

To write a Shell script displays the numbers between 1 and 9999 in words. 
Algorithm: 
 

1. Start. 
2. Read the number. 
3. Separate the number and depending upon the position display the value in words. 
4. Stop. 

 
Source Code: 
    
   clear 
   echo "enter any number between 1 -9999:" 
   read n 
   n1=$n 
    r=`expr $n / 1000` 
    n=`expr $n % 1000` 
    case $r in 
 
       1)echo "one thousand";; 
       2)echo "two thousand";; 
       3)echo "three thousand";; 
       4)echo "four thousand";; 
       5)echo "five thousand";; 
       6)echo "six thousand";; 
       7)echo "seven thousand";; 
       8)echo "eight thousand";; 
       9)echo "nine thousand";; 
        esac 
 
     r=`expr $n / 100` 
     n=`expr $n % 100` 
     case $r in 
 
       1)echo "one hundred";; 
       2)echo "two hundred";; 
       3)echo "three hundred";; 
       4)echo "four hundred";; 
       5)echo "five hundred";; 
       6)echo "six hundred";; 
       7)echo "seven hundred";; 
       8)echo "eight hundred";; 
       9)echo "nine hundred";; 
        esac  
 

Page | 53  

 



Department of Computer Science and Engineering  2023-2024 

     if [`expr $n %10`-ne 0–a $n1–gt 100] 
            then  
            echo "and" 
            fi 
            if [ $n -gt 20 ] 
            then 
            r=`expr $n / 10` 
            n=`expr $n % 10` 
            case $r in 
            2)echo "twenty";; 
            3)echo "thirty";; 
            4)echo "forty";; 
            5)echo "fifty";; 
            6)echo "sixty";; 
            7)echo "seventy";; 
            8)echo "eighty";; 
            9)echo "ninety";; 
            esac               
            fi 
            case $n in 
 
            1)echo "one";; 
            2)echo "two";; 
            3)echo "three";; 
            4)echo "four ";; 
            5)echo "five";; 
            6)echo "six";; 
            7)echo "seven";; 
            8)echo "eight";; 
            9)echo "nine";; 
            10)echo "ten";; 
            11)echo "eleven";; 
            12)echo "tweleve";; 
            13)echo "thirteen";; 
            14)echo "fourteen";; 
            15)echo "fifteen";; 
            16)echo "sixteen";; 
            17)echo "seventeen";; 
            18)echo "eighteen";; 
            19)echo "ninteen";; 
            20)echo "twenty";; 
            esac 
 
Output: 
Enter any number between 1-9999: 818 
 
eight hundred  and eighteen 

Result: 
Thus the above shell script to display numbers in words is written and output is verified. 

Page | 54  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :15 Sorting the given names Date  : 
 
Aim: 
 To write a Unix shell script to sort the given names in alphabetical order 
 
Algorithm: 

1. Start. 
2. Get the number of names and the list of names. 
3. Store all the names into a file and use the Unix utility sort to sort the names in the file 

and display the sorted list from the file. 
4. Stop. 
 

Source Code: 
 
clear 
echo "Enter the no of names :" 
read n 
echo "Enter the names" 
if test -f "sample.txt" 
then 
rm sample.txt 
fi 
while test $n -gt 0 
do 
read s 
echo $s | cat>>sample.txt 
n=`expr $n - 1` 
done 
echo "The alphabetical order of the names . ." 
sort "sample.txt" 
 
Sample Input and Output: 
 
[annex]$ sh p15.sh 
 
Enter the no of names : 6 
Enter the names 
Riyaz 
suman 
Brijesh 
Arasi 
Thirumurugan 
Pavithran 
 

Page | 55  

 



Department of Computer Science and Engineering  2023-2024 

The alphabetical order of the names . . 
Arasi 
Brijesh 
Pavithran 
Riyaz 
suman 
Thirumurugan 
 
Result: 
 Thus, a Unix shell script to sort the given names in alphabetical order is written and 
output is verified. 

Page | 56  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :16 Reversing a given string Date  : 
 
Aim: 

To write a Unix Shell Script to reverse a given string 
 
Algorithm: 

1. Start. 
2. Get the string from the user. 
3. Using the cut command display the string in reverse order by extracting character by 

character from the last. 
4. Stop. 
 

Source Code: 
 
clear 
echo "Enter the string" 
read s 
z=` echo $s|wc -m` 
while test $z -gt 0 
do 
echo -n `echo $s|cut -c $z` 
z=` expr $z - 1` 
done 
echo 
 
Sample Input and Output: 
 
Enter the string 
hi friends 
sdneirf ih 
[annex]$ sh p16.sh 
 
 
Result: 
 Thus, the Unix Shell Script to reverse a given string is written and output is verified. 
 
 

Page | 57  

 



Department of Computer Science and Engineering  2023-2024 

 
Ex. No. :17 File copy Date  : 
 
Aim: 
 To write a Unix shell script to copy the contents of a given file to another file. 
 
Algorithm: 

1. Start. 
2. Get the source and destination file name. 
3. Use the unix command cp to copy the content from source to destination file. 
4. Display the contents of the destination file using cp command. 
5. Stop. 

 
Source Code: 
 
clear 
echo Enter the source file name 
read a 
echo Enter the destination file name 
read b 
cp $a $b 
 
Sample Input and Output: 
 
[annex]$ sh ex17.sh 
 
Enter the source file name 
ex14.sh 
Enter the destination file name 
cp1.sh 
[annex]$ cat cp1.sh 
 
Result: 
 Thus, a Unix shell script to copy the contents of a given file to another file is written and 
output is verified. 
 

 

Page | 58  

 


	01 CSPC409 – Operating Systems - Cover Page - 1 Page
	02 22CSPC408 – Operating Systems - Certificate Page - 1 Page
	03-VissionMIssion to ToC - 7 Pages
	Course Objectives :
	List of Exercises
	Course Outcomes:

	04 OS, Unix Ex 1 to 7 - 58 Pages new
	Source code:
	Output:
	Result:
	Algorithm:
	Source code:
	Result:
	Algorithm:
	Source Code:
	clear
	echo "enter any number between 1 -9999:"
	read n
	n1=$n
	r=`expr $n / 1000`
	n=`expr $n % 1000`
	case $r in
	1)echo "one thousand";;
	2)echo "two thousand";;
	3)echo "three thousand";;
	4)echo "four thousand";;
	5)echo "five thousand";;
	6)echo "six thousand";;
	7)echo "seven thousand";;
	8)echo "eight thousand";;
	9)echo "nine thousand";;
	esac
	r=`expr $n / 100`
	n=`expr $n % 100`
	case $r in
	1)echo "one hundred";;
	2)echo "two hundred";;
	3)echo "three hundred";;
	4)echo "four hundred";;
	5)echo "five hundred";;
	6)echo "six hundred";;
	7)echo "seven hundred";;
	8)echo "eight hundred";;
	9)echo "nine hundred";;
	esac
	if [`expr $n %10`-ne 0–a $n1–gt 100]
	then
	echo "and"
	fi
	if [ $n -gt 20 ]
	then
	r=`expr $n / 10`
	n=`expr $n % 10`
	case $r in
	2)echo "twenty";;
	3)echo "thirty";;
	4)echo "forty";;
	5)echo "fifty";;
	6)echo "sixty";;
	7)echo "seventy";;
	8)echo "eighty";;
	9)echo "ninety";;
	esac
	fi
	case $n in
	1)echo "one";;
	2)echo "two";;
	3)echo "three";;
	4)echo "four ";;
	5)echo "five";;
	6)echo "six";;
	7)echo "seven";;
	8)echo "eight";;
	9)echo "nine";;
	10)echo "ten";;
	11)echo "eleven";;
	12)echo "tweleve";;
	13)echo "thirteen";;
	14)echo "fourteen";;
	15)echo "fifteen";;
	16)echo "sixteen";;
	17)echo "seventeen";;
	18)echo "eighteen";;
	19)echo "ninteen";;
	20)echo "twenty";;
	esac
	Output:
	Result:


